

Air Force Research Laboratory Space Vehicles Directorate

Overview – Space Applications and Opportunities

Dr. Keith K. Denoyer 505.846.8251

Keith.Denoyer@kirtland.af.mil

Challenges of Modern Space Systems

- Current systems are large and complex
 - Expensive to design, build and launch
 - Long development times, technically obsolete at launch
 - Launch Costs are Prohibitive
 - Static designs with no adaptability to evolving world situations and threats

New paradigms required to change the order of business for Air Force

- Basic rethinking of space system architectures
- Simultaneous attack on performance and cost

Space Applications that Need Tech Insertion

- Large Optical Systems
 - Surveillance and Directed Energy
- High Power Spacecraft
 - Large PV Arrays
- Launch Environment Mitigation
 - Vibration, Acoustics, and Shock
- Docking for On-Orbit Servicing
 - Smart Docking Mechanisms vs. Smart Servicing S/C

Large Space Optics Technology Needs

Next Generation Space Telescope

Cryogenic
Inflatable Sun Shield

Common

Adaptive Optics
Lightweight Mirrors
Lightweight Structures
Mechanisms
Precision Structures
Micro-dynamics
Wavefront Sensors
Integrated Controls
End-to-End Integrated Modeling

Space-based Laser

Thermal Control ATP/FC Laser Disturbance

Relay Mirror

Gimbaled Telescopes
Laser Beacon on
Articulated Boom
Beam Cleanup
Momentum Control

Tactical Imaging Agile Targeting

Geolocation Inertial Reference

Aperture Comparison Summary

Launch Vehicle Constraints on Maximum Satellite Size and Weight

Space Shuttle

Titan IV

EELV

- All available choices currently constrained by ~5 m diameter
- Available weight depends on specific launch vehicle and orbit

Lightweight Space Optics Technical Needs

- Lightweight Mirrors
 - Scalable approaches to large-aperture lightweight mirror structures
- Lightweight Precision Structures
 - High-stiffness structures providing optical precision dimensional stability
- Deployment Mechanisms for Optical Systems
 - Precision deployment mechanism concepts for space optics systems.
- Integrated Opto-Mechanical Control Systems
 - Innovative, traceable approaches to high-performance control systems
- End-to-End Integrated Modeling
 - Tools & software to provide system-level performance and trades

AFRL's Deployable Optical Telescope (DOT)

Objectives:

- phasing & maintenance of segmented primary mirror
- deployment, capture, and maintenance of secondary mirror
- Demonstration of traceable control algorithms, WFS/WFC, mechanisms, and advanced actuators

Testbed Description

- f/20 sparse phased-aperture telescope
- 3 sub-apertures, fill factor = 29%
- 1.7 m encircled aperture dia. (1.5 m eff)
- 0.6 m sub-aperture diameter

Technical Metrics/Goals

	Goal	Current Values	
Sub-Aperture Phasing			
Accuracy (segment-to-segment OPD)	0	< 1 nm (1/600 wave)	
Complexity, Autonomy, Traceability, Cost	Min/Max, Subjective		
Deployment mechanisms			
Accuracy	< 10 microns	*	
Repeatability	1 micron (2 •)	*	
Stability	Incidence frequency, magnitude, hysteresis	*	
Deployed Stiffness	1 M lb/in (SBL)	*	
Precision Structures			
Dimensional Stability	Expansion coefficients	?	
Stiffness (1 st mode)	>40 Hz	25-30 Hz	
Lightweight Mirror Structures			
Areal Density	< 10 kg/m ²	< 12 kg/m ²	
Surface accuracy	< 1/30 wave rms	> 1 wave rms	
Radius of curvature matching		*	

Role for Smart Materials

- Actuators
 - Huge Dynamic Range (nm to cm)
 - Compact and Light (including electronics!!!)
 - Space Survivable
- Reliable, Stable Deployment Mechanisms
- Damping Treatments for High Stiffness Structures
 - Exploit nonlinear characteristics of smart materials for passive damping and isolation

Space-Based Laser

- SBL Beam Director Element
 - AFRL SPICE facility currently baselined
 - SBL structural risk reduction testbed
- NEXUS
 - NASA Deployable Optics Flight Experiment
 - Anticipated launch in late 2004
 - 3-meter segmented telescope design
 - NGST- scale deployment mechanisms

BDE Testbed Concept

AMSD is an Integral Component of Large Optics Revolution

Approximate Area Density of Large Mirrors 1789-2030

Advanced Lightweight Mirrors

Motivation:

Mirrors are principle driver of mass and volume for large optical space systems. Economical, reliable methods of producir large numbers of lightweight (15kg/m^2) not exist.

ACTUATORS NOW DRIVING MIRROR SYSTEM MASS!!

Technical Objectives:

Areal Density < 15 kg/m

Shape Hexagonal

Petal Size Between 1.2 and 1.5m

Operating Temp.:

Ambient 300 +/- 10 K Cryo 35 +20 /- 5 K

Future: Membrane Optics

Areal Density ~1 kg/m

Precision Deployed Structures

Technical Objectives

- Development of precision deployment concepts
 - High stiffness-mechanisms
 - Deterministic load-bearing deployment
 - Sub-wavelength passive stability

Program Description

- Contract (SBIR) Efforts
 - Starsys Phase-I
 - Zero-force precision latch (E-K interest)
 - Foster-Miller Phase-II
 - Integral Hinge Mechanisms (E-K interest)
 - Foster-Miller Phase-I
 - Precision latch
- Collaborative Research
 - NASA LaRC low-hysteresis hinges
- In-house mechanism testing in PDOS facility

Vibration Isolation and Suppression System (VISS) Successfully Launched

Technical Objectives

- Demonstrate stable precision sensor platform
- Demonstrate suppression of tonal disturbances
- Demonstrate steering for imaging applications

Program Description

- BMDO sponsored hardware development effort
- AFRL and JPL: software, controller design, performance and qualification testing
- Integrated with STRV-2 Experiment Module on TSX-5 satellite

Hardware Description

- Six hybrid actuators
 - Passive isolation using D-Strut TM elements
 - Active isolation, steering, and vibration suppression using magnetic voice coils
- Stewart Platform configuration
- Re-programmable flight electronics
- Supports DERA (MOD) MWIR imager

Honeywel 🗑

Status

- TSX-5 launch date 07 June 2000
- VISS turn-on ~20 June 2000
- VISS Engineering model delivered to AFRL 31 May 2000
- VISS Mission Ops team ready

NEXT STEP: Need to Miniaturize!!

Technology Challenge: High Power Space Systems

- Many Current Systems Are Power Constrained:
 - GPS IIF uses less power than a common hairdryer

GPS Satellite
1000 Watts

Hairdryer 1200 Watts

Significant Increase in Power Required for Future Systems

Space Based Radar - Space Based Laser

25kW - 100 kW

Eliminate Power From The Space Equation

AFRL Power Sail Program

Deployment Sequence: Origami in Space??

stowed

Features of Stowage and Deployment

- The panels bend/twist but do not shear during deployment
- The panel sizes vary greatly
- The stowed package is long if n is not sufficiently large

Elastic spars along the spiral folds

Comparison of Solar Cell Technologies

Array Type	AM0 BOL Efficiency	Panel Configuration	Operating Temp (deg C)	Temp. Factor	Radiation Factor	EOL Specific Power (W/kg)
State of practice, 5.5 mil GaAs/Ge on rigid substrate	18.5%	Gr/Ep Al H/C Gr/Ep	60	0.93	0.82	36
3-Junction on rigid substrate	24.0% 24.0% w/ 1.7X conc.	Gr/Ep Al H/C Gr/Ep	60	0.93	0.82	47 80
4-Junction on rigid substrate	35.0% w/1.7X conc.	Gr/Ep Al H/C Gr/Ep	60	0.93	0.82	116
FTFPV (CIGS or a-Si) on polyimide*	10% 15% 20%	5 mm CIS or a-Si 1.5 mil polyimide substrate	75	0.76	0.97	350 525 700
FTFPV (CIGS or a-Si) on stainless steel*	10% 15% 20%	5 mm CIS or a-Si 1 mil stainless steel	75	0.76	0.97	255 380 510
Holy-Grail!! III-V-based thin- film on flex structure*	35%	5 mm III-V MJ 1.5 mil polyimide	60	0.93	0.85-0.95	1225

^{*} Array support structure is 0.1kg/m² FTFPV blanket, interconnects, cabling and thermal control included

Taming the Launch Environment: New Success in Launch Isolation

Stex Flight Data

1st Generation

Axial Only

Three Successful Taurus Launches: GFO, STEX, MTI

OSP/JAWSAT SPECIFICS

Isolation System Properties

- Mass: 25.61 lbs

— Height : 3.5"

Additional 0.5" and 4.1 lbs
 Added for This Mission

 Flight Data Concurs with Coupled-Loads Analysis

 JAWSAT Satellite consisted of Five Small Satellites

- FALCONSAT - Air Force Academy

- JAWSAT Frame - OSSS and NASA

- OSCE - AFRL/DE

- OPAL - Stanford

- ASUSAT - Arizona State

Taming the Launch Environment: Low Shock Release of FalconSat on OSP-1

STARSYS

 Air Force Academy FalconSat was successfully deployed from OSP-1 on 27 Jan 00 using four Starsys QWKNUTs.

FalconSat Separation System on the test stand

Lightweight Flexible Solar Array (LFSA) Integrated Subsystem Demonstration

LFSA Benefits

- Demonstrate Specific power >100Watts/kg compared to 40Watts/kg
- Uses CuInSe2 (CIS) 8.6% thin film solar cells on flex Poly
- SMA hinge and deployment systems for controlled deployment
- Low stowage volume
- MFS PV substrates with integral traces leading to 30% mass cut in cable harness

LFSA Demonstration Panel EO-1 Spacecraft
Summer '00

Shape Memory Alloy Hinge Successfully Demonstrated on Shuttle

Historical Challenges of Space Servicing

Impediments to Current Space Servicing

- Costs more to service than to replace
- Takes too long
- Limited repairability of satellites

IntelSat VI Rescue Mission \$96M (Hughes) + \$450M (NASA)

Hubble Repair Mission \$674M

Inexpensive, Simple Autonomous Operations, and Fast Response Servicers Are Required to Make Space Servicing Routine

Elements Required for Inspection and Servicing of Space Assets

- Satellite designed for onorbit servicing
 - Open architecture backbone
 - e.g., PC-like bus
 - Ports available from outside

- Autonomous, low cost, vision-guided inspector/servicer
 - Finds, inspects, docks and services
 - Provides satellite visual assessments, replaces modular components, and replenishes expendables

Revolutionary paradigm shift in satellite design and operations

Conclusion

- Time is Ripe for the Insertion of Smart Structures and Materials into Space Systems
 - Recent Space Demonstrations
 - More Stringent Requirements
- Military Systems
 - Low Cost
 - Large Aperture
 - Launch Costs
- AFRL Focus
 - Rapid Transition through Demonstration
 - Requires Inter-Government as Well as Industry Cooperation (\$\$)